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Abstract. Monocular depth has been found using estimation, closed-form 
solution and learning techniques. Estimation and closed-form solution compute 
the depth from motion, while learning techniques calculate the depth using a 
single image with a depth map as a supervisor. This paper presents a new closed 
form solution for monocular depth from motion. The proposed method builds 
on the notation that an interest point in an image of a static scene has a static 
world location. Camera pose and calibration parameters are used as constraints 
to provide the depth solution. The proposed method is verified through real 
experiments on indoor mobile robot platform. The effect of uncertainty in the 
solution variables is studied and the results are benchmarked to groundtruth. 
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1 Introduction 

Depth calculation is necessary for several applications in computer vision and 
robotics, such as navigation, obstacle avoidance, visual simultaneous localization and 
mapping. Traditionally, stereo vision has been used to compute depth through the 
epipolar geometry. Alternatively, monocular depth is the depth computed from the 
images captured by a single camera [1]. Computing monocular depth has been 
introduced through estimation, closed-form solution and learning techniques.   

Estimation and closed-form solution techniques compute the depth from the 
motion of the observing camera. This requires tracking of a number of interest points 
through the captured monocular sequence of images. Estimation techniques mainly 
employ Kalman filters to iteratively estimate depth and geometrical structure of the 
scene [2-7]. However, closed-form solutions impose the geometrical constraints of 
motion to reduce the number of unknowns and determine the depth in real time [8]. 
On the other hand, supervised learning has been used to find depth from a single 
image with a groundtruth depth map acting as a teacher [9-10].  

For the applications of mobile robots, depth recovery from visual information is 
necessary for navigation. The estimation techniques of depth from motion take a 
number of iterations until settled to a depth value and thus affecting the accuracy of 
robotic missions like obstacle avoidance, localization and mapping. On contrary, 
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closed-form solutions can compute the depth in real time and thus enable safe 
navigation of mobile robots. The closed-form solutions depend on several constraints 
to simplify the depth calculations such as the planar robot motion, the geometrical 
constraints and the known camera calibration parameters [8, 11]. Murphey et al have 
used the geometrical constraints to find depth from motion using a closed form 
solution [8]. However, they neglected the camera calibration parameters and the 
camera rotation information as well.  

In this paper, a new closed-form solution for depth from motion is presented. The 
proposed solution recovers the depth of a static point in real time without the need of 
iterative estimation. Both the camera pose and the calibration parameters information 
have been used to compute the depth. The new depth solution builds on the notation 
that any interest point existing in an image of a static scene, has a static location in 
world. This constraint has been used to calculate the depth of an image point from 
just two monocular views of that point. The proposed solution differs from the 
traditional triangulation methods [12] because it only needs matching for one image 
point.  The paper is organized as follows. The closed-form solution is introduced in 
the next section. The results of experiments on indoor mobile robot are presented in 
section 3 along with uncertainty analysis. Discussion of the results and the 
limitations of the proposed method are given in section 4. Finally, conclusions are 
drawn in section 5. 

2 Closed-Form Solution 

The proposed method works under the following assumptions: 

• The camera is calibrated. 
• The observed features are static. 
• The robot pose is known. 

The calibrated camera is assumed to move and a sequence of monocular images is 
captured. Consider a static point feature ݌௜௪ ൌ ሺܺ ܻ ܼሻ் represented in world 
coordinates. The camera observes ݌௜௪ twice from two different world positions: ݎଵ௪௖,  ௜௪ in the two݌ ଶ௪௖ as shown in Fig. 1. The distances between the camera andݎ
observations are denoted as ݄ଵ௖ and ݄ଶ௖  which are represented in the camera 
coordinates. Transformation from camera to world coordinates is performed by the 
rotation matrices: ܴଵ௪௖, ܴଶ௪௖which are functions of the camera pitch angles: ߠଵ,  .ଶߠ
The pitch angle is the rotation of the planar robot around the vertical axis ܻ௖. The 
projections of  ݌௜௪on the image plane are ሺݑଵ,   ݒଵሻ in the first image and ሺݑଶ,   ݒଶሻ in 
the other image. 

The intrinsic parameters of the camera are given from prior camera calibration. 
Standard pinhole camera model- without lens distortion- [1] has been used along with 
these intrinsic parameters. The distance between the camera and an observed point is 
composed of three Euclidean components; ݄௖ ൌ ሺ݄௫ ݄௬ ݄௭ሻ். Thus, the pixel 
coordinates of the observed point are given by the camera model: 
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Fig. 1. The mobile robot with the onboard camera observing a feature from two different 
positions 

ቀݒݑቁ ൌ ۈۉ
଴ݑۇ െ ݂݀ ݄௫݄௭ݒ଴ െ ݂݀ ݄௬݄௭ ۋی

ۊ
 

(1)
 

where u0, v0 are the camera center in pixels, f is the focal length and d is the pixel size. 
 The world location of the point feature can be determined given the location of the 

camera and the distance from this location to the point. This may be written for the 
two different observations as: ݌௜௪ ൌ ଵ௪௖ݎ ൅ ܴଵ௪௖݄ଵ௖ 

(2)

௜௪݌ ൌ ଶ௪௖ݎ ൅ ܴଶ௪௖݄ଶ௖  (3)

where: 

௜௪௖ݎ ൌ ൭ݔ௜ݕ௜ݖ௜ ൱ ,  ܴ௜௪௖ ൌ ൭ cos ௜ߠ 0 sin ௜0ߠ 1 0െ sin ௜ߠ 0 cos  ௜൱ߠ
 (4)

 
 
 



476 M. Hasan and M. Abdellatif 

From (1)  

݄௜௖ ൌ ቌ݄௫௜݄௬௜݄௭௜ ቍ ൌ ۈۈۉ
݂݀ۇ ሺݑ଴ െ ௜ሻ݄௭௜݂݀ݑ ሺݒ଴ െ ݒ௜ሻ݄௭௜݄௭௜ ۋۋی

ۊ ൌ  ݄௭௜ ቆܽ௜ܾ௜1 ቇ (5)

where ܽ௜ ൌ ݂݀ ሺݑ଴ െ ,௜ሻݑ  ܾ௜ ൌ ݂݀ ሺݒ଴ െ ௜ሻ (6)ݒ

and i=1, 2 in (4-6). 
It can be noted that the observed feature has a fixed world location regardless of 

camera motion. This constraint has been used to provide solution by equating (2), (3), 
using (4-6) and rearranging: 

൭ ܽଵ cos ଵߠ ൅ sin ଵߠ െܽଶ cos ଶߠ െ sin ଶܾଵߠ െܾଶെܽଵ sin ଵߠ ൅ cos ଵߠ െܽଵ sin ଵߠ ൅ cos ଵ൱ߠ ൬݄௭ଵ݄௭ଶ൰ ൌ 

൭ݔଶ െ ଶݕଵݔ െ ଶݖଵݕ െ ଵݖ ൱ 

(7)

or equivalently: 
ܣ  ݄௭ ൌ (8) ܤ

 
where ݄௭ ൌ ሺ݄௭ଵ ݄௭ଶሻ். 

The depth of the feature can now be calculated from (8): 
 ݄௭ ൌ ሺܣ்ܣሻିଵ(9) ܤ்ܣ

 
This completes the solution of the depth of the point. 

3 Experiments and Results 

The proposed depth solution has been verified using an indoor mobile robot platform 
(Robotino). Camera is fixed on the planar mobile robot as shown in Fig. 1. The robot 
is translated laterally facing a scene in our lab space while capturing a sequence of 
monocular images. This robot motion is repeated at three different distances from the 
scene (d1, d2, d3) resulting in three different scales for each image. In each group of 
images, distinctive features are detected in the first image and their pixel 
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measurements are recorded. These features are then tracked through the images 
sequence in each group and the matched measurements are recorded for each feature. 

The image coordinates of the feature in the first image and its match in the other 
image during motion are now known. Also the location and orientation of the camera 
while capturing both images can be acquired from robot odometry. These data along 
with camera intrinsic parameters provide a depth solution as given in (9).  

The three robot lateral paths start at d1=3.48m, d2=2.64m and d3=1.44m from the 
nearest point in the scene, respectively.  The distance between the nearest and the 
farthest points in the scene is 1.6m. Twenty five images have been captured during 
each robot motion for about 92 cm at equidistant points. Thus, three groups of 
monocular images of a static scene at three different scales are provided. In each 
group of images, a number of distinctive features is tracked through the sequence and 
matches for every point are recorded.  

3.1 Manual Matching 

In the first experiment, features have been selected and tracked in a manual mode to 
evaluate the proposed method. For example, the fourth frame from each group of 
images is shown with the selected points in Fig. 2. 

The measurements of the selected features in the first frame are used as (ݑଵ,  ,(ଵݒ
while the matched location of the feature in every subsequent image is (ݑଶ,  ଶ) as inݒ
section 2. Depth is calculated using these measurements through (5-7) at every image. 
The calculated depth of each feature at every frame is used in (2) to calculate the 
world location of the feature. The Z-coordinate of the feature location (depth 
coordinate) is compared to the measured groundtruth of feature and the error is found.  
The errors in depth calculations for some of the features in the first group are 
described in Table 1 Results are shown for the calculations at five different lateral 
positions. 

The effect of the observing distance between camera and feature has been studied 
for three features in the three groups of measurements. The first feature appears with 
the feature numbers 6, 3 and 1 in the three groups respectively. The other two features 
numbers are (8, 4, 2) and (9, 5, 3) respectively. Results of errors in depth calculations 
are shown in Fig. 3. 

The proposed method of depth solution is affected by the uncertainty in points 
matching (u, v), robot pose (x, z, θ) and camera calibration (d/f). These effects have 
been studied for the third feature in Fig.3 at the third distance, since this has the 
minimalist error. The solution parameters associated with this case of minimum error 
have been selected as reference values. Perturbations have then been made around 
these reference values and the error in the resulting depth is shown. The error in depth 
is normalized by the groundtruth depth of the feature. The effects of uncertainty in 
matching the features through the image sequence have been studied for a range of ±5 
pixels. The errors in horizontal matching (u-image coordinate) and vertical matching 
(v-image coordinate) are shown in Fig.4. The effect of errors in camera calibration 
parameters; the ratio (d/f) is shown in Fig. 5. Finally, the effect of error in robot pose  
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(a)           (b)                        (c) 
  

Fig. 2. The fourth frame in the the monocular sequence of the captured scene in the three 
groups at different distances (a) d1= 4m. (b) d2=2.8. (c) d3=1.6m 

Table 1. Depth errors for features in the first group matched manually 
 

P Z 

(m) 

Error (m)  

at different frames  

Mean

error 

(m)  

% 

Mean 

error  5 10 15 20 25 

1 4.44  -0.004 0.013 -0.017 -0.029 -0.026 -0.012 -0. 270 

2 4.33  0.498 -0.074 -0.094 -0.105 0.217 0.088 2.032 

3 4.42 -0.026 -0.214 -0.301 -0.112 -0.160 -0.163 -3.687 

4 4.42  0.147 -0.056 -0.048 0.023 -0.007 0.011 0.248 

5 4.65  0.277 -0.105 -0.150 -0.068 -0.09 -0.028 -0.602 

6 4.68  0.462 -0.021 -0.043 -0.065 -0.010 0.064 1.367 

7 4.65  0.320 0.093 -0.002 0.025 0.009 0.089 1.913 

 
 

has been studied through testing error in the robot lateral position, forward position 
and heading angle (θ) as shown in Fig. 6. The errors in robot pose and calibration 
parameters are normalized by their original non-noisy value. 

3.2 Automatic Matching 

The evaluation technique used in section 3.1 has been repeated but with automatic 
matching of the features through the sequence. The first seven features displayed in 
Fig. 2 (a) with their depth results in Table 1, are now tracked through the images of 
the first group. A fixed-size template has been extracted from the first image centered 
on each feature’s image location. This template has been used as the descriptor for the 
feature and has been tracked using Fast template matching [13].  
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Fig. 3. Depth errors for three features evaluated at the three capturing distances: d1, d2, d3 

Fast template matching method implements Normalized Cross Correlation, NCC in 
frequency domain using pre-computed tables containing the integral of the image and 
image square over the search window. The normalized form of cross correlation is 
necessary to overcome the problem that image and templates are not the same size. 
More important, NCC deals with the variation in the intensity of both the image and 
templates. Fast Fourier transform is adopted to switch to the frequency domain. 
Transform computations are efficiently performed using summed-area tables 
containing the integral of the image (running sum) and image square over the search 
area. 
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Fig. 4. The effect of error in matching on the depth calculations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The effect of error in camera calibration parameters (d/f) on depth calculations 

Fig. 6. The effect of error in robot pose on the depth calculations 
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     (a)                                (b)                                                     (c)

Every five frames, a matching score is calculated between the templates and the 
image in order. The image point having the peak of the matching score is compared to 
an empirically defined threshold (0.85). If the matching score passes the threshold, 
then this image point is the match of the feature. The results of matching the features 
are shown in Fig. 7 for three frames in the sequence. 

The first three features have not been tracked well through all images. The results of 
depth calculations of all features are given in Table 2. The effect of matching error is 
apparent in the large error in the depth of the first three features. The maximum mean 
error of depth of the other features is 7.60 cm which is 1.63 % of the true depth. 

 
 

 

Fig. 7.   Fast template matching results for the first group of images:  (a) 5th frame (b) 15th 
frame (c) 25th fame. The first three features have large error in matching.  

Table 2. Results of depth calculations using automatic matching. The first three features have 
large error in matching and hence in depth. 

P Z 

(m) 

Error (m)  

at different frames  

Mean

error 

(m)  

% 

Mean 

error 5 10 15 20 25 

1 4.44  0.370 0.340 0.354 0.455 -24.58 -4.612 -103 

2 4.33  0.682 0.187 0.261 -5.225 -5.510 -1.921 -44.3 

3 4.42 -0.098 -0.284 -0.260 -6.846 -7.907 -3.079 -69.6 

4 4.42  0.185 -0.138 -0.064 0.100 0.0456 0.025 0.565 

5 4.65  0.383 -0.087 -0.103 -0.082 -0.063 0.009 0.193 

6 4.68  0.211 -0.167 -0.140 -0.038 -0.088 -0.044 -0.949 

7 4.65  0.496 -0.039 -0.051 -0.026 0.004 0.076 1.634 
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4 Discussion 

The error in depth calculations using the proposed method has not exceeded 3.7% in 
case of manual matching; while with robust automatic matching the depth in error has 
been below 1.7%. The proposed method depends on observing a feature at two 
different world positions. The amount of lateral translation between these two 
positions of observation has great effect on the depth result. It is shown in Table 2 that 
the amount of translation should not be less than about 20 cm (distance between five 
images). The mean of the depth error for each feature is shown to be in the range from 
1 cm to 16 cm. Fig.3 shows that the depth error is degraded at the tenth frame (40 cm 
translation). The depth accuracy increases if the camera observes the feature from 
near distances as already known from stereo vision [1]. These accuracy conditions can 
be considered suitable for applications like visual navigation of indoor mobile robots. 

The effects of uncertainty described in Fig. 4-6 provide the ranges of allowable 
errors for the proposed method. Due to the lateral motion of the robot observing a 
static scene, the horizontal image coordinate has a considerable change as clear in 
Fig.4 (a) compared to the vertical change in (b). These results show that the depth 
error don't exceed ±2 % (about ±8 cm in this case) for ± 5 pixels in horizontal 
matching error. 

The proposed method depends on the amount of translation between the robot's 
two observing positions. Consequently, Fig. 5 (a) shows that the error in lateral 
motion has greater effect than that of the forward motion in (b) or rotational motion in 
(c). To keep the depth error inside a range of ±2 %, the allowable range for lateral 
position error is ±5 % (about ±4 cm in this case). To keep the depth error inside the 
same range of ±2 %, the allowable range for calibration parameters is ±6 % (about 
1.8e-004). The depth calculations are thus sensitive to the error in calibration 
parameters. 

5 Conclusions 

A new closed-form solution for depth from motion has been introduced. The proposed 
method makes use of the constraint that the world location of an image point is fixed 
regardless of motion. The method assumes that the pose and the calibration 
parameters of the camera are known. Experimental results on an indoor planar mobile 
robot have been presented to verify the solution. From the discussion given in the 
previous section, some conclusions can be given about the validity of the proposed 
method: 

• The error in the depth solution with automatic points matching is below 1.7%. 
• The error in points matching should be within a range of ± 5 pixels. 
• The amount of translation between the camera observing locations should not 

be less than 20 cm. 
• The error of the camera position should not exceed ±5 % of the true position. 
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